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SUMMARY

An e�ective numerical technique is presented to model turbulent motion of a standing surface wave in
a tank. The equations of motion for turbulent boundary layers at the solid surfaces are coupled with
the potential �ow in the bulk of the �uid, and a mixed BEM–�nite di�erence technique is used to
model the wave motion and the corresponding boundary layer �ow. A mixing-length theory is used for
turbulence modelling. The model results are in good agreement with previous physical and numerical
experiments. Although the technique is presented for a standing surface wave, it can be easily applied
to other free surface problems. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Detailed knowledge of the �ow structure in a wave boundary layer is needed in calculating
quantities like wave friction on a �oating structure, rate of sediment transport in coastal areas,
and energy dissipation in a sloshing tank. In many occasions, the �ow is turbulent with the
e�ects con�ned to the boundary layers at the solid boundaries, and an e�ective numerical
method to couple the �ow outside the boundary layer with that inside the boundary layer
is desirable. This paper discusses such an e�ective numerical technique based on a mixed
boundary element-�nite di�erence formulation.
The boundary element method (BEM) has been successfully applied to analyse problems in

free-surface �ows, e.g. see the review by Grilli and Subramanya [1] for nonlinear progressive
water wave problems, and the papers by Hamano et al. [2] and Heister [3], respectively,
for standing waves and two-layer �ows. The boundary element approach is attractive for
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free-surface problems because unlike the domain discretization techniques such as �nite
element and �nite di�erence methods, only the boundary needs to be discretized, leading
to considerable savings in computer storage and time.
In application of BEM to linear or nonlinear water waves, the most successful approaches

have been based on describing the physical problem by potential �ow theory, i.e. neglecting
viscous e�ects on the wave �ow. The literature on inclusion of viscous e�ects in BEM
formulation of water waves using potential theory is rare. Grilli et al. [4] modelled wave
dissipation in a BEM study of wave shoaling on a sandy bed using potential theory by
applying a variable synthesized pressure on the free surface. The pressure distribution was
chosen in such a way to extract energy from the wave at a given rate. Recently, Jamali [5]
presented a numerical technique which extends the capability of BEM in solution of surface
water wave problems to laminar boundary layer e�ects. A BEM formulation of the potential
�ow in the bulk of �uid was coupled with a �nite di�erence solution of the boundary layer
equations to give the complete �ow �eld. The technique was used to determine the damping
rate of a standing wave in a tank, and a good agreement with the previous results was
obtained.
In this paper, the technique is extended to turbulent boundary layers. A simple mixing

length theory is used for turbulence modelling, and the method is applied to turbulent motion
of a standing wave in a tank. The objective is to show how the boundary element technique
can be e�ectively used in modelling surface wave motion over a turbulent boundary layer
for practical purposes. Compared to a general-purpose CFD package, the technique has the
advantage of accuracy and reducing running time and computer storage by avoiding solving
equations of motion for the whole domain. The advantage becomes more signi�cant as the
�uid domain becomes bigger.
The overview of the paper is as follows. In Section 2, the theory of nonlinear wave mo-

tion with a thin turbulent boundary layer is discussed. In Section 3, the mixed BEM–�nite
di�erence method is discussed for two-dimensional standing wave motion. Numerical experi-
mentation is carried out in Section 4. The model results are compared with previous physical
and numerical experiments in Section 5. This is followed by concluding remarks in Section 6.

2. FORMULATION

Consider the motion of an incompressible, homogenous, viscous �uid in a two-dimensional
container as shown in Figure 1. The �uid domain is denoted by �, and its boundary by
�=�f+�s, where �f is the free-surface boundary and �s the solid boundaries. The undisturbed
depth of the �uid is denoted by h, the container width by W , and the kinematic viscosity of
the �uid by �. The coordinate system x–z is located at the lower left corner of the container,
and n=(nx; nz) is the unit vector normal to the �uid domain in an outward direction. The
free-surface displacement is denoted by � and the velocity vector by V=(Vx; Vz).
For a viscous motion the velocity vector may be taken as the sum of an irrotational vector

∇� and a solenoidal vector U, i.e. V=∇�+U [6], where � is velocity potential, governed
by the Laplace equation

∇2�=0 in � (1)
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Figure 1. Con�guration of the problem.

At high Reynolds numbers, the e�ect of viscosity may be ignored outside the boundary
layers, and the �ow can be treated as potential. This implies |U|�|∇�| outside the boundary
layers. Assuming a linear �uid motion inside the boundary layers, the momentum equation is
given by

@U
@t
=∇:(�e∇U) in � (2)

where �e is eddy viscosity. Based on the improved mixing length model of Madsen and
Wikramanayake [7], the following equation is assumed for eddy viscosity:

�e =

{
0:4|u∗;max|xn for xn6abl�

0:4|u∗;max|� for xn¿abl�
(3)

where u∗;max is the maximum value of the shear velocity u∗=
√|�b(t)|�, �b(t) is instantaneous

shear stress at the solid surface, � �uid density, � wave boundary layer thickness, abl a
modelling parameter, and xn distance from the solid surface. The parameter abl is the fraction
of the boundary layer thickness above the bed over which the eddy viscosity varies linearly.
The eddy viscosity is considered constant above the linear portion. This turbulent model was
chosen mainly for its simplicity to demonstrate how BEM applications may be extended to
turbulence e�ects. The model is based on physically sound principles and has the advantage of
easy implementation for practical purposes [7]. It should be noted, however, that the overall
numerical technique is independent of the type of turbulent model used.
The solenoidal velocity component automatically satis�es the equation

∇ ·U=0 in � (4)

On the free surface �f , i.e. z= h + �(x; t), the boundary conditions may be written in a
convenient form for BEM implementation as

(
@�
@t

)
s
= − 1

2

(
@�
@s

)2
+
1
2

(
@�
@n

)2
+
@�
@s
@�
@n

tan � − g� (5)
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and

@�
@t
=

1
cos�

@�
@n

(6)

[8], where s and n are directed along and outward normal to the free surface, respectively, �
is the angle between the free surface and the horizon at the point of interest, and g is gravity
acceleration. The operator (@=@t)s is the time derivative when a point on the free surface with
�xed x is followed. On the solid surfaces �s, the boundary condition is

∇�+U=0 (7)

Note that outside the boundary layers, the �ow motion is considered to be nonlinear, i.e.
the nonlinear terms in (5) and (6) are retained, and the free-surface boundary conditions are
applied at the unknown level z= h+ �(x; t). Taking (xt ; xn) to be the local coordinate system
inside the boundary layers as shown in Figure 1, where xt and xn are distances along and
normal to the solid surfaces, respectively, from (2) and (7), one can write

@Ut
@t
=
@
@xn

(
�e
@Ut
@xn

)
in � (8)

@�
@xt

+Ut =0 at �s (9)

and

@�
@xn

+Un=0 at �s (10)

where Ut and Un are the velocity components of U in directions of xt and xn, respectively.
Note that inside the boundary layer the �ow length-scale normal to the solid surface is much
smaller than that along the surface, so in derivation of (8), the derivatives with respect to xt
have been ignored. The shear stress at the solid surface in the local coordinate is approximated
by �b ≈��e@Ut=@xn.
For turbulence modelling, the boundary �s in (9) is taken to be e�ectively located at

xn= xn;0 where the tangential velocity is assumed to be zero. The parameter xn;0 is an em-
pirical constant and depends on the bed roughness Ks. For an arti�cial bed, it is assumed
xn;0 = 0:033Ks [9]. Equations (1), (3)–(6), and (8)–(10) constitute the equations of motion
for �ow in a container with a turbulent boundary layer.
With the assumption of a thin boundary layer with thickness �, �= k� is a small param-

eter. Considering that � is the length-scale for variation of the tangential velocity across the
boundary layer, it is convenient to de�ne the normalized coordinate

	=
xn
�

(11)

and re-write Equations (8) and (4) in terms of the new normal coordinate; as a result

@Ut
@t
=
@
@	

(
�e
�2
@
@	
Ut

)
in � (12)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:371–383



COUPLED BOUNDARY ELEMENT–FINITE DIFFERENCE MODEL 375

and

@Un
@	

+ �
@Ut
@xt

=0 in � (13)

Equation (13) can be integrated to yield Un at �s as

Un|solid surface = �
@

(∫ ∞
0 Ut d	

)
@xt

(14)

knowing Un → 0 at 	=∞. The computed value for Un is then used to obtain @�=@xn at
the solid surface using (10). It is seen @�=@xn=O(�) at the solid surface. As the solenoidal
velocity vector U diminishes outside the boundary layer, Equation (12) is subject to the
additional boundary condition

Ut =0 at 	=∞ (15)

In the following section, Equations (1) and (12) subject to the boundary conditions (5)–(6),
(9)–(10), and (14)–(15) are solved numerically using a mixed BEM–�nite di�erence tech-
nique. For modelling purposes, the boundary layer thickness � in (3) is obtained from
Fredsoe’s equation [10]

�=0:15A�

(
A�
Ks

)−0:25
(16)

where A�=H=(2 sinh kh) is the wave excursion amplitude just outside the boundary layer,
and k and H are the wave number and the wave height, respectively.

3. NUMERICAL TECHNIQUE

The aforementioned equations constitute an initial-boundary value problem. The Laplace equa-
tion and the boundary layer equation (12) are solved using BEM and a �nite-di�erence tech-
nique, respectively. For BEM solution, the �uid boundary � is discretized in linear elements
by N nodes. At the corners, the ‘double nodes’ method is used to handle discontinuity of the
�ux at these points, e.g. see Reference [2]. Many authors have been forced to implement a
smoothing procedure to prevent sawtooth instabilities which occur on the free surface after a
large number of time steps, see Reference [3]. This is usually done by re-gridding the free
surface nodes. However, here the free surface pro�le is stabilized by adding arti�cial di�usion
terms �a@2�=@x2 and �a@2�=@x2 to the right-hand sides of (5) and (6), respectively. A value of
�a = 10−6 m2=s is used in the present calculations. This value was found su�cient to prevent
instability while it is still small enough not to a�ect the �ow dynamics.
The boundary layer equations are solved using a Crank–Nicolson scheme. A length of 3=k

for the domain length in the 	 direction was found su�ciently large to model the in�nite
boundary 	=∞. This is equivalent to a distance of 3� from the solid boundary. With this
choice of location of the in�nite boundary, the calculations become e�ectively independent of
�. However, the use of � reduces computer round-o� errors by making the di�usion coe�cient
in Equation (12) of order unity. The domain was discretized using M equally-spaced grid
points with spacing �	.
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The time integration of �, �, and Ut from time t to t +�t is carried out according to the
following steps:
Step 1: For the boundary layer above each BEM node on the solid surface, Ut |t+�t is

obtained from the �nite di�erence solution of (12) using a Crank–Nicolson �nite di�erence
scheme. As the boundary condition at the solid boundary is not known at next time level, it
is assumed Ut |t+�t ≈Ut |t at 	=0. This introduces an error of O(�t), which can be ignored.
Step 2: @�=@xn at each BEM node at next time level is calculated from (10)

using (14).
Step 3: Equations (5) and (6) with the arti�cial di�usion terms added are discretized using

an explicit scheme to obtain � and � at t +�t on the free surface. Note that @�=@n|t on the
free surface is already available from the solution of Laplace equation at time t.
Step 4: Having � at t +�t, the nodes at the free surface are moved to the new location.

Then, having � for the free surface nodes and the outward potential �ux @�=@n= − @�=@xn
at t+�t from Step 2 for the solid surface, the Laplace equation is solved using the boundary
element technique to obtain the potential solution at t + �t. For a description of BEM for
Laplace equation, the interested reader is referred to numerous textbooks on the subject and
the articles by Hamano et al. [2] and Grilli and Subramanya [1] on BEM applications to
free-surface water waves.
The solution of the Laplace equation gives the potential on the solid surface and @�=@n

on the free surface at the time level t +�t. From the solution, Ut |t+�t at the solid surface
is calculated from (9) using a central di�erence scheme. For the corner nodes, a one-sided
scheme is used.
Starting from t=0, Steps 1–4 are repeated at every time step to obtain the solution at the

next time level. The initial condition for the potential �ow may be obtained from a linear
theory, and U can be considered zero at the start of the simulation.

4. NUMERICAL EXPERIMENTS

Consider a container having the dimensions W =2 m and h=0:6 m in which a �rst-mode
standing wave with height 0:14 m is oscillating in water with �=10−6 m2=s. The free-
surface boundary and the whole solid boundary are each discretized with 40 nearly equally-
spaced nodes for BEM application, and 150 grid points are used for discretization of the
boundary layer, so N =80, M =150, and Nf = 40, where Nf denotes the number of BEM
nodes on the free surface. The time step �t=0:0002 s was found su�ciently small to give
accurate results for the simulation. The boundary layer model parameter abl = 0:1, and the
sediment bed is assumed to have Ks = 0:009 m. At t=0 the standing wave is assumed to
have a �at free surface, and the corresponding initial condition is obtained from the linear
theory.
Figure 2(a) shows time variation of � at the left and right corners of the free surface.

In Figure 2(b) the free surface displacement at instances t=4:20 s≈ 2:25T , t=4:65 s≈ 2:5T ,
and t=5:12 s≈ 2:75T , where T is the wave period, is presented. It is seen that the free
surface has been smoothly simulated with no sawtooth instability. However, a beating e�ect
is observed in the time history of displacement of each corner. This could be because of
presence of higher wave harmonics from the nonlinear e�ects; it is seen in Figure 2(b) that
the free surface pro�le is not completely sinusoidal as the wave node is not located at the
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Figure 2. (a) Time variation of the displacements of the left and right corners of
the free surface; and (b) pro�le of the free surface at time intervals of about T=4 for
W =2 m, h=0:6 m, H =0:14 m, and �=10−6 m2=s. The discretization parameters are

N =80, Nf = 40, M =150, �t=0:0002 s, and abl = 0:1.

Figure 3. Comparison of pro�les of the free surface at t=9:80 s from three di�erent discretizations;
W =2 m, h=0:6 m, H =0:14 m, �=10−6 m2=s, and abl = 0:1.

mid-point of the tank. From the numerical results, T =1:867 s, which is close to the value
1:865 s from the dispersion relation !2 = gk tanh(kh), where ! is frequency.
To check convergence of the results, simulations were also carried out for a coarse discreti-

zation with N =80, Nf = 40, M =75 with �t=0:0002 s and a �ne discretization with N =120,
Nf = 60, M =150 with �t=0:000125 s. The results are shown in Figure 3 for the free surface
pro�le at t=9:80 s≈ 5:25T and in Figures 4(a) and (b) for velocity distribution and shear
stress distribution, respectively, in the bed boundary layer midway between the walls (under
standing wave node) at t=9:30 s≈ 5T . The results indicate that the three mesh sizes yield
almost the same free surface displacement, and there is little di�erence between the computed
shear stress and velocity distributions from the three mesh sizes. Therefore, convergence is
warranted.
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Figure 4. Comparisons of (a) velocity distributions and (b) shear stress distributions in the bed boundary
layer midway between the walls at t=9:30 s from three di�erent discretizations; W =2 m, h=0:6 m,

H =0:14 m, �=10−6 m2=s, and abl = 0:1.

Figure 5. Comparison of velocity distributions in the bed boundary layer midway between the walls
at t=9:30 s using abl = 0:10; 0:23, and 0.35; W =2 m, h=0:6 m, H =0:14 m, and �=10−6 m2=s. The

discretization parameters are N =80, Nf = 40, M =150, and �t=0:0002 s.

At this point, it is appropriate to do a sensitivity analysis on the boundary layer model
parameters abl and xn;0. Figure 5 presents a comparison of velocity distributions in the bed
boundary layer midway between the walls at t=9:30 s using abl = 0:1; 0:23, and 0.35. It is
seen that use of a smaller abl results in a larger overshoot in the velocity pro�le along with
a downward shift in the level of the maximum velocity. This is the same result as obtained
by Madsen and Wikramanayake [7]. Figure 6 presents the model results for xn;0 = 0:015Ks,
0:033Ks, and 0:066Ks with abl = 0:23. It is seen that a larger xn;0 results in a thicker boundary
layer and a larger bed shear stress. It should be noted that xn;0 = 0:033Ks is usually used for
turbulent boundary layer modelling.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:371–383



COUPLED BOUNDARY ELEMENT–FINITE DIFFERENCE MODEL 379

Figure 6. Comparison of pro�les of (a) velocity and (b) shear stress in the bed
boundary layer midway between the walls at t=9:30 s for xn; 0 = 0:015Ks, 0:033Ks, and
0:066Ks; W =2 m, h=0:6 m, H =0:14 m, �=10−6 m2=s, and abl = 0:23. The discretization

parameters are N =80, Nf = 40, M =150, and �t=0:0002 s.

5. COMPARISON WITH PREVIOUS RESULTS

In this section the model is �rst compared with the improved model of Madsen and
Wikramanayake [7]. Next, the results are compared with the experimental data sets VDW
of Van Doorn [11], JC1 and JC2 of Jonsson and Carlsen [12], and numerical experiments
DVW05, DVW10, and DVW15 of Davies et al. [13]. Davies et al. [13] used a di�erent
mixing length model. The parameters for these data sets are summarized in Table I.
The conditions of VDW experiment are used to compare the present model and the im-

proved model of Madsen and Wikramanayake [7]. The only di�erence between the two mod-
els is that Madsen and Wikramanayake used �bl = 0:4u∗

max=!, while the present model uses
Equation (16). For VDW experiment, the present model with abl = 0:23 is equivalent to the
improved model of Madsen and Wikramanayake with abl = 0:35. Based on these parameters
the results of the two models for the velocity pro�le in the bed boundary layer for VDW
experimental conditions when the free stream velocity is maximum are presented in Figure 7.
The discretization N =80, Nf = 40, M =150, and �t=0:0002 s was used for the present
model. It is seen that the two models yields almost the same result. The small di�erence
between the two can be attributed to numerical factors.
In Figure 8, the model results for abl = 0:1 and 0.23 are compared with the experimental

data of Van Doorn [11] for the velocity pro�le in the bed boundary layer when the free
stream velocity is maximum. It is seen that the pro�le with abl = 0:1 �ts the data near the
bottom while the pro�le with abl = 0:23 works better towards the top of the boundary layer.
Figures 9 and 10 present comparisons of the model results for abl = 0:1 and 0.23 with

the experimental data JC1 and JC2 of Jonsson and Carlsen [12], respectively, for the velocity
pro�le in the bed boundary layer when the free stream velocity is maximum. The discretization
parameters are N =80, Nf = 40, M =150, and �t=0:001 s. It is seen that the pro�les with
abl = 0:23 are in better agreement with the experimental data than the pro�les with abl = 0:10
near the bed and towards the top of the boundary layer. However, the level of the overshoot
and the magnitude of the overshoot are better represented by the pro�les abl = 0:10.
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Table I. Parameters for the experimental data sets. �=10−6 m2=s in all the experiments.

Data set A� (m) ! (rad=s) Ks (cm)
A�
Ks

Re=
A2�!
� Reference

VDW 0.0843 3.142 2.10 4.1 2:2× 104 Van Doorn [11]
JC1 2.81 0.749 1.59 177.2 5:9× 106 Jonsson and Carlsen [12]
JC2 1.753 0.873 7.50 23.4 2:7× 106 Jonsson and Carlsen [12]
DVW05 0.637 0.785 15.0 4.2 3:2× 105 Davies et al. [13]
DVW10 1.274 0.785 15.0 8.5 1:27× 106 Davies et al. [13]
DVW15 1.911 0.785 15.0 12.7 2:86× 106 Davies et al. [13]

Figure 7. Comparison of the present model and the improved model of Madsen and
Wikramanayake [7] for the velocity pro�le in the bed boundary layer for VDW experimen-
tal conditions when the free stream velocity is maximum. The discretization parameters for the

present model are N =80, Nf = 40, M =150, and �t=0:0002 s.

Figure 11 shows a comparison of the instantaneous velocity pro�les from the model for
abl = 0:23 with the numerical results DVW10 of Davies et al. [13] at di�erent phases. The dis-
cretization parameters for the present model are N =80, Nf = 40, M =150, and �t=0:002 s.
It is seen that the model results �t well the numerical data close to the bed and towards the
top of the boundary layer.
Next attention is paid to the calculated maximum shear stresses in di�erent cases. Based on

their improved model, Madsen and Wikramanayake [7] proposed the following expression for
the friction factor fw=2�b(t)=�u∞|u∞|, where u∞ is the instantaneous free stream velocity
just outside the boundary layer, for (A�=Ks)¡1000

fw= exp

[
5:2

(
A�
Ks

)−0:19
− 6:1

]
− 0:24

(
A�
Ks

)−1:2
(17)

The maximum shear stresses for the conditions of Van Doorn [11] and Davies et al. [13] as
calculated by Davies et al. [13], the present model with abl = 0:10 and 0.23, and Equation (17)
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Figure 8. Comparison of the model results for abl = 0:10 and 0.23 with the experimental
data VDW (Van Doorn [11]) for the velocity pro�le in the bed boundary layer when the
free stream velocity is maximum. The discretization parameters for the present model are

N =80, Nf = 40, M =150, and �t=0:0002 s.

Figure 9. Comparison of the model results for abl = 0:10 and 0.23 for the velocity
pro�le in the bed boundary layer when the free stream velocity is maximum with the
experimental data JC1 of Jonsson and Carlsen [12]. The discretization parameters are

N =80, Nf = 40, M =150, and �t=0:001 s.

are compared in Table II. In general, it is seen that the model results with abl = 0:23 are in
better agreement with previous results than are the results with abl = 0:10.
The above comparisons show that the present model has been successful in predicting the

boundary layer structure and the bed shear stress. The indications are that for wave conditions
a value of abl = 0:23 is the best. The use of a smaller value of abl usually results in signi�cant
changes to the computed velocity and shear stress. These are similar to the results obtained
by Madsen and Wikramanayake [7].
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Figure 10. Comparison of the model results for abl = 0:10 and 0.23 for the velocity
pro�le in the bed boundary layer when the free stream velocity is maximum with the
experimental data JC2 of Jonsson and Carlsen [12]. The discretization parameters are

N =80, Nf = 40, M =150, and �t=0:001 s.

Figure 11. Comparison of the instantaneous velocity pro�les from the model for abl = 0:23 with the
numerical results DVW10 of Davies et al. [13] at di�erent phases. The discretization parameters are

N =80, Nf = 40, M =150, and �t=0:002 s.

6. CONCLUDING REMARKS

A coupled BEM–�nite di�erence technique was presented to model standing wave motion in a
tank with a turbulent boundary layer. The model results are in good agreement with previous
experimental and theoretical results.
As the objective of the paper has been to show the possibility of extending BEM capabilities

to model turbulence e�ects, use of a sophisticated turbulent model was avoided for clarity
purposes. As such a simple mixing length theory was chosen for turbulent modelling. However,
the overall coupling technique is not limited to the turbulent model used, and one may use
other models.
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Table II. The maximum shear stresses (in N=m2) for the conditions of Van Doorn
[11] and Davies et al. [13] as calculated by Davies et al. [13], the present model

with abl = 0:10 and 0.23, and Equation (17).

Present model

Data set Davies et al. [13] Equation (17) abl = 0:10 abl = 0:23

VDW — 2.68 1.53 2.40
DVW05 8.1 9.3 5.8 8.6
DVW10 23.5 26.5 18.5 23.7
DVW15 44.3 49.4 33.0 40.2

In the formulation, the free-surface boundary layer was ignored, and the boundary layer
equations for the solid surface were linearized. The proposed technique can be easily extended
to include the e�ect of the free-surface boundary layer and the convection term in the boundary
layer equations. The linearized boundary layer equation is appropriate when the surface wave
has small amplitude. For large waves, the nonlinear convection term becomes important. This
term may be discretized using a simple explicit scheme. Finally, the extension to other free-
surface �ows including two-layer ones is straightforward.
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